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Motivated by synchronization problems in noisy environments, we study the Edwards-Wilkinson process on
weighted uncorrelated scale-free networks. We consider a specific form of the weights, where the strength �and
the associated cost� of a link is proportional to �kikj�� with ki and kj being the degrees of the nodes connected
by the link. Subject to the constraint that the total edge cost is fixed, we find that in the mean-field approxi-
mation on uncorrelated scale-free graphs, synchronization is optimal at �*=−1. Numerical results, based on
exact numerical diagonalization of the corresponding network Laplacian, confirm the mean-field results, with
small corrections to the optimal value of �*. Employing our recent connections between the Edwards-
Wilkinson process and resistor networks, and some well-known connections between random walks and
resistor networks, we also pursue a naturally related problem of optimizing performance in queue-limited
communication networks utilizing local weighted routing schemes.
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I. INTRODUCTION

Synchronization in natural and artificial complex inter-
connected systems �1–4� has been the focus of interdiscipli-
nary research with applications ranging from neurobiology
�5,6�, ecology and population dynamics �7,8� to scalable
computer networks �9–13�. In the recent flood of research on
complex networks �14–19�, the focus has shifted from struc-
ture to various dynamical and stochastic processes on net-
works, synchronization and transport are being one of them.
The common question addressed by most studies within their
specific context is how the collective response of locally-
coupled entities is influenced by the underlying network to-
pology.

A large number of studies investigated the Kuramoto
model of coupled oscillators �4,20�, naturally generalized to
complex networks �21–23�. The common feature of the find-
ings is the spontaneous emergence of order �synchronous
phase� on complex networks, qualitatively similar to that ob-
served on fully-connected networks �also referred to as com-
plete graphs�, in contrast to regular networks in low dimen-
sions. Another large group of studies addressed
synchronization in coupled nonlinear dynamical systems
�e.g., chaotic oscillators� �3� on small-world �SW� �24� and
scale-free �SF� �25–29� networks. The analysis of synchroni-
zation in the latter models can be carried out by linearization
about the synchronous state and using the framework of the
master stability function �30�. In turn, the technical challenge
of the problem is reduced to the diagonalization of the
Laplacian on the respective network, and calculating or esti-
mating the eigenratio �24� �the ratio of the largest and the
smallest nonzero eigenvalue of the network Laplacian�, a
characteristic measure of synchronizability �smaller eigenra-
tios imply better synchronizability�. Along these lines, most
recent studies �26–28,31� considered not only complex, pos-

sibly heterogeneous, interaction topologies between the
nodes, but also heterogeneities in the strength of the cou-
plings �also referred to as weighted complex networks�.

In a more general setting of synchronization problems, the
collective behavior or response of the system is obviously
strongly influenced by the nonlinearities, the coupling or in-
teraction topology, the weights or strength of the �possibly
directed� links, and the presence and the type of noise �3,29�.
Here, we study synchronization in weighted complex net-
works with linear coupling in the presence of delta-correlated
white noise. Although it may appear somewhat simplistic
�and, indeed prototypical�, such problems are motivated by
the dynamics and fluctuations in task-completion landscapes
in causally-constrained queuing networks �32,33�, with ap-
plications in manufacturing supply chains, e-commerce-
based services facilitated by interconnected servers �34�, and
certain distributed-computing schemes on computer net-
works �9–13�. This simplified problem is the Edwards-
Wilkinson �EW� process �35� on the respective network
�36–41�.

Here, we consider a specific and symmetric form of the
weights on uncorrelated SF networks, being proportional to
�kikj�� where ki and kj are the degrees of the nodes connected
by the link �28�. The above general form has been suggested
by empirical studies of metabolic �42� and airline transpor-
tation networks �43�. Here, we study the effect of such a
weighting scheme in our synchronization problem. Associat-
ing the weight or strength of each link with its cost, we ask
what is the optimal allocation of the weights �controlled by
�� in strongly heterogeneous networks, with a fixed total
cost, in order to maximize synchronization in a noisy envi-
ronment. For the EW process on any network, the natural
observable is the width or spread of the synchronization
landscape �36,38–41�. Then the task becomes minimizing
the width as a function of � subject to a �cost� constraint.

Despite differences in the assumptions concerning noise
and constrained cost, our results are very similar to the find-
ings by Zhou et al. �28�, who investigated synchronization of*Electronic address: korniss@rpi.edu
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coupled nonlinear oscillators on the same type of network.
The optimal value of � is close to −1 �and is exactly −1 in
the mean-field approximation on uncorrelated random SF
networks�. The two problems are inherently related through
the eigenvalue spectrum of the same network Laplacian.

Transport and flow on complex networks have also be-
come the subject of intensive research with applications to
biological, transportation, communication, and infrastructure
networks �31,43–67�. While our primary motivation is the
above described synchronization phenomena in noisy envi-
ronments, we also explore some natural connections with
idealized transport and flow problems on complex networks,
in particular, connections with local routing schemes
�57,58,62�. Connections between random walks and resistor
networks have been discussed in detail in several works
�68–70�. Further, we have recently pointed out �36� some
useful connections between the EW process and resistor net-
works �both systems’ behavior is governed by the same net-
work Laplacian�. Thus our results for the synchronization
problem have some straightforward implications on the re-
lated resistor network and random walk problems, pursued in
the second part of this work.

The remainder of the paper is organized as follows. In
Sec. II, we present results for the EW synchronization prob-
lem on weighted uncorrelated SF networks from a con-
strained optimization viewpoint. In Sec. III, we discuss the
related questions for idealized transport problems: weighted
resistor networks and weighted random walks. A brief sum-
mary is given in Sec. IV.

II. OPTIMIZATION OF SYNCHRONIZATION
IN WEIGHTED COMPLEX NETWORKS

IN NOISY ENVIRONMENTS

The EW process on a network is given by the Langevin
equation

�thi = − �
j=1

N

Cij�hi − hj� + �i�t� , �1�

where hi�t� is the general stochastic field variable on a node
�such as fluctuations in the task-completion landscape in cer-
tain distributed parallel schemes on computer networks
�10,38,39�� and �i�t� is a delta-correlated noise with zero
mean and variance ��i�t�� j�t���=2�ij��t− t��. Here, Cij =Cji

�0 is the symmetric coupling strength between the nodes i
and j �Cii�0�. Defining the network Laplacian,

�ij � �ijCi − Cij , �2�

where Ci��lCil, we can rewrite Eq. �1�

�thi = − �
j=1

N

�ijhj + �i�t� . �3�

For the steady-state equal-time two-point correlation func-
tion one finds

Gij � ��hi − h̄��hj − h̄�� = �̂ij
−1 = �

k=1

N−1
1

�k
�ki�kj , �4�

where h̄= �1/N��i=1
N hi and �¯� denotes an ensemble average

over the noise in Eq. �3�. Here, �̂−1 denotes the inverse of �
in the space orthogonal to the zero mode. Also, 	�ki
i=1

N and
�k, k=0,1 , . . . ,N−1, denote the kth normalized eigenvectors
and the corresponding eigenvalues, respectively. The k=0
index is reserved for the zero mode of the Laplacian on the
network: All components of this eigenvector are identical
and �0=0. The last form in Eq. �4� �the spectral decomposi-

tion of �̂−1� can be used to directly employ the results of
exact numerical diagonalization. The average steady-state
spread or width in the synchronization landscape can be writ-
ten as �36,38,39�

�w2� � � 1

N
�
i=1

N

�hi − h̄�2� =
1

N
�
i=1

N

Gii =
1

N
�
k=1

N−1
1

�k
. �5�

The above observable is typically self-averaging �confirmed
by numerics�, i.e., the width �w2� for a sufficiently large,
single network realization approaches the width averaged
over the network ensemble.

The focus of this section is to optimize synchronization
�i.e., minimize the width� on �i� weighted uncorrelated net-
works with SF degree distribution and �ii� subject to fixed a
cost. In the context of this work, we define the total cost Ctot
simply to equal to the sum of weights over all edges in the
network

�
i�j

Cij =
1

2�
i,j

Cij = Ctot. �6�

The elements of the coupling matrix Cij can be expressed in
terms of the network’s adjacency matrix Aij and the assigned
weights Wij connecting node i and j as Cij =WijAij. Here, we
consider networks where the weights are symmetric and pro-
portional to a power of the degrees of the two nodes con-
nected by the link, Wij 	 �kikj��. We choose our cost con-
straint to be such that it is equal to that of the unweighted
network, where each link is of unit strength

�
i,j

Cij = 2Ctot = �
i,j

Aij = Nk̄ , �7�

where k̄=�iki /N=�i,jAij /N is the mean degree of the graph,
i.e., the average cost per edge is fixed. Thus, the question we
ask, is how to allocate the strength of the links in networks
with heterogeneous degree distributions with fixed total cost
in order to optimize synchronization. That is, the task is to
determine the value of � which minimizes the width Eq. �5�,
subject to the constraint Eq. �7�.

Combining the form of the weights, Wij 	 �kikj��, and the
constraint Eq. �7� one can immediately write for the coupling
strength between nodes i and j
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Cij = Nk̄
Aij�kikj��

�l,n
Aln�klkn��

. �8�

From the above it is clear that the distribution of the weights
is controlled by a single parameter �, while the total cost is

fixed, Ctot=Nk̄ /2.

A. Globally optimal network with fixed cost

Before tackling the above optimization problem for the
restricted set of heterogeneous networks and the specific
form of weights, one may ask what is the optimum among all
networks with fixed cost, for which the EW synchronization
problem yields the minimum width. This will serve as a
“baseline” reference for our problem. From the above frame-
work it follows that

2Ctot = �
i,j

Cij = �
i

Ci = �
i

�ii = Tr��� = �
l�0

�l. �9�

Thus the global optimization problem can be cast as

�w2� =
1

N
�
l=1

N−1
1

�l
= minimum, �10�

with the constraint

�
l=1

N−1

�l = 2Ctot = fixed. �11�

This elementary extremum problem, Eqs. �10� and �11�, im-
mediately yields a solution where all N−1 nonzero eigenval-
ues are equal,

�l =
2Ctot

N − 1
, l = 1,2, . . . ,N − 1, �12�

and the corresponding absolute minimum of the width is

�w2�min =
�N − 1�2

2NCtot
. �13�

As one can easily see, the above set of identical eigenvalues
corresponds to a coupling matrix and network structure
where each node is connected to all others with identical
strength Cij =2Ctot / �N�N−1��. That is, for fixed cost, the
fully-connected �FC� network is optimal, yielding the abso-
lute minimum width.

If one now considers the synchronization problem on any

network with N nodes, with average degree k̄ and with total

cost Ctot=Nk̄ /2 to be optimized in some fashion �e.g., with
respect to a single parameter �, Eq. �8��, the above result
provides an absolute lower bound for the optimal width

�w2����min 

�N − 1�2

N2

1

k̄



1

k̄
. �14�

The above result is only of our interest in that it provides
a mathematical absolute upper bound for the synchronization
efficiency �absolute lower bound for the width�. Also, in light

of the mean-field approximation presented in the next section
�Sec. II B� one can immediately see that there is a trivial �yet
still sparse� network, which systematically approaches the
above globally optimal behavior �for sufficiently large k�: A
perfectly homogeneous random graph where each node is
connected to exactly k others. For such graphs, for
1�k�N, the width approaches �the optimal� �w2�
1/k.

The subject of this paper, however, is the scenario where
the network structure is heterogeneous and fixed. Thus the
question we ask is the following: What is the best one can do
to optimize synchronization in a noisy environment in
strongly heterogeneous �scale-free� graphs if one cannot
choose or change the structure, but can allocate weights
�coupling strength� of a simple form and with a fixed total
cost.

B. Mean-field approximation on uncorrelated SF networks

First, we approximate the equations of motion �Eq. �1��
by replacing the local weighted average field �1/Ci�� jCijhj

with the global average h̄ �the mean-height�

�thi = − �
j=1

N

Cij�hi − hj� + �i�t�

= − Ci�hi −
� j

Cijhj

Ci

� + �i�t�

� − Ci�hi − h̄� + �i�t� . �15�

As can be directly seen by summing up Eq. �1� over all

nodes, the mean height h̄ performs a simple random walk
with noise intensity O�1/N�. Thus, in the mean-field �MF�
approximation, in the asymptotic large-N limit, fluctuations
about the mean are decoupled and reach a stationary distri-
bution with variance

��hi − h̄�2� � 1/Ci, �16�

yielding

�w2� =
1

N
�
i=1

N

��hi − h̄�2� �
1

N
�

i

1

Ci
. �17�

Next, we establish an approximate relationship between
the effective coupling to the mean, Ci, and the degree ki of
node i, for uncorrelated �UC� weighted random graphs. Us-
ing the specific form of the weights as constructed in Eq. �8�,
we write

Ci = �
j

Cij = Nk̄
� j

Aij�kikj��

�l,n
Aln�klkn��

= Nk̄
ki

�� j
Aijkj

�

�l
kl

��n
Alnkn

�
.

�18�

For large minimum �and in turn, average� degree, expres-
sions of the form � jAijkj

� can be approximated as
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�
j

Aijkj
� = ��

j

Aij�� j
Aijkj

�

� j
Aij

= ki

� j
Aijkj

�

� j
Aij

� ki� dk P�k�ki�k�, �19�

where P�k �k�� is the probability that an edge from node with
degree k� connects to a node with degree k. For uncorrelated
random graphs, P�k �k�� does not depend on k�, and one has
P�k �k��=kP�k� / �k� �17,75�, where P�k� is the degree distri-
bution and �k� is the ensemble-averaged degree. Thus, Eq.
�18�, for UC random networks, can be approximated as

Ci � N�k�
ki

�+1� dk P�k�ki�k�

N� dk�k��+1P�k�� � dk P�k�k��k�

= �k�
ki

�+1

�
m

�

dk�k��+1P�k��
. �20�

Here, we consider SF degree distributions,

P�k� = �� − 1�m�−1k−�, �21�

where m is the minimum degree in the network and
2��
3. The average and the minimum degree are related
through �k�=m��−1� / ��−2�. No upper cutoff is needed for
the convergence of the integral in Eq. �20�, provided that
2+�−��0, and one finds

Ci �
� − 2 − �

� − 2

ki
�+1

m� . �22�

Thus, for uncorrelated random SF graphs with large mini-
mum degree, the effective coupling coefficient Ci only de-
pends on the degree ki of node i, i.e., for a node with degree
k

C�k� �
� − 2 − �

� − 2

k�+1

m� . �23�

Finally, assuming self-averaging for large enough networks
and combining the above, one obtains for the width of the
synchronization landscape

�w2���� �
1

N
�

i

1

Ci

� �
m

�

dk P�k�
1

C�k�
=

1

�k�
�� − 1�2

�� − 2 − ���� + ��
,

�24�

where using infinity as the upper limit is justified for
�+��0. Elementary analysis yields the main features of the

above expression for the average width as follows.
�1� �w2���� is minimum at �=�*=−1, independent of the

value of �.
�2� �w2�min= �w2��*��=1/ �k�.
The above approximate result is consistent with using in-

finity as the upper limit in all integrals, in that the optimal
value �*=−1 falls inside the interval −�����−2 for 2
��
3. Interestingly, one can also observe, that, in this ap-
proximation, the minimal value of the width is equal to that
of the global optimum �Eq. �14��, realized by the fully con-
nected network of the same cost N�k� /2, i.e., with identical
links of strength �k� / �N−1�.

We emphasize that in obtaining the above result �Eq. �24��
we employed two very strong and distinct approximations:
�i� For the dynamics on the network, we neglected correla-
tions �in a MF fashion� between the local field variables and
approximated the local height fluctuations by Eq. �16�; �ii�
We assumed that the network has no degree-degree correla-
tions between nodes which are connected �UC�, so that the
“weighted degree” Ci can be approximated with Eq. �22� for
networks with m�1.

Finally, we note that the average width, in principle, can
also be obtained by employing the density of states �DOS�
���� of the underlying weighted network Laplacian through
�w2�= �1/N��l=1

N−11 /�l
��1/������d�, in the asymptotic
large-N limit �37,38�. Obtaining the DOS analytically, how-
ever, is a rather challenging task. Just recently, using the
replica method �71,72�, Kim and Kahng obtained the DOS
for the Laplacian of unweighted ��=0� SF graphs �73�,
which they were able to evaluate in the asymptotic
1� �k��N limit. Utilizing their result, we have checked and
found full agreement for the width with Eq. �24� for �=0.
Approximate results from the replica-obtained DOS in the
1� �k��N limit, are in essence, of mean-field like, and one
expects to find agreement with our generic result Eq. �24� for
arbitrary �.

C. Numerical results

For comparison with the above mean-field results, we
considered Barabási-Albert �BA� SF networks �14,16�,
“grown” to N nodes �74�, where P�k�=2m2 /k3, i.e., �=3.
While growing networks, in general, are not uncorrelated,
degree-degree correlations are anomalously �marginally�
weak for the BA network �75,76�.

We have performed exact numerical diagonalization and
employed Eq. �4� to find the local height fluctuations and Eq.
�5� to obtain the width for a given network realization. We
carried out the above procedure for 10–100 independent net-
work realizations. Finite-size effects �except for the m=1 BA
tree network� are very weak for −2���1; the width essen-
tially becomes independent of the system size. Figure 1 dis-
plays result for the local height fluctuations as a function of
the degree of the node. We show both the fluctuations aver-
aged over all nodes with degree k and the scattered data for
individual nodes. One can observe that our approximate re-
sults for the scaling with the degree �combining Eqs. �16�
and �22��, ��hi− h̄�2��1/Ci�ki

−��+1�, work very well, except
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for very low degrees. The special case �=0, is exceptionally
good, since here Ci=� jAij =ki exactly, and the only approxi-
mation is Eq. �16�.

In Fig. 2, we show our numerical results for the width and
compare it with the approximate �MF+UC� results Eq. �24�.
They agree reasonably well for networks with m�1. The
divergence of the approximate result Eq. �24� at �=−3 and
�=1 is the artifact of using infinity as the upper limit in the
integrals performed in our approximations.

The results for the width clearly indicate the existence of
a minimum at a value of �* somewhat greater than −1. As
the minimum degree m is increased, the optimal � ap-
proaches −1 from above. This is not surprising, since in the
limit of m�1 �large minimum degree�, both the MF and the
UC part of our approximations are expected to work progres-
sively better. In Fig. 3, we show the width as a function of
1/m for the BA networks, indicating the rate of convergence
to the MF+UC result, Eq. �24�. Figure 3 also indicates that
finite-size effects are very small and only contribute as small
corrections to the finite value of the width in the limit of N
→�. For �=0, our approximation �Eq. �24�� is within 8%,
4%, and 1% of the results extracted from exact numerical
diagonalization through Eq. �5�, for m=10, m=20, and m
=100, respectively. For �=−1, it is within 15%, 7%, and 3%
of the numerical results for m=10, m=20, and m=100, re-
spectively. Thus our approximation works very well for large
uncorrelated sparse SF networks with sufficiently large mini-
mum �and consequently, average� degree.

The above optimal link-strength allocation at around the
value �*=−1 seems to be present in all random networks

where the degree distribution is different from a delta func-
tion. For example, in SW networks �77–79�, although the
degree distribution has an exponential tail, �w2� also exhibits
a minimum, but the effect is much weaker, as shown in Fig.
2�a�. Further, a point worthwhile to mention, a SW network
with the same number of nodes and the same average degree
�corresponding to the same cost� always “outperforms” its
SF counterpart �in terms of minimizing the width�. The dif-
ference between their performance is smallest around the op-
timal value, where both are very close to that of the lowest
possible value, realized by the FC network of the same cost
�Table I�.

III. CONNECTIONS WITH TRANSPORT AND FLOW
PROBLEMS IN WEIGHTED NETWORKS

A. Optimizing the system resistance in weighted
resistor networks

Resistor networks have been widely studied since the
1970s as models for conductivity problems and classical
transport in disordered media �80,81�. Amidst the emerging
research on complex networks, resistor networks have been
employed to study and explore community structures in so-
cial networks �82–85�. Also, electrical networks with di-
rected links �corresponding to diodes� have been used to pro-
pose novel page-ranking methods for search engines on the
World-Wide-Web �86�.

Most recently, simple resistor networks were utilized to
study transport efficiency in SF �64,65� and SW networks
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FIG. 1. �Color online� Height fluctuations as a function of the degree of the nodes for N=1000, �k�=20, and for �a� �=−2.00,
�b� �=−1.50, �c� �=−1.00, and �d� �=0.00. Data, represented by filled symbols, are averaged over all nodes with degree k. Scatter plot
�dots� for individual nodes is also shown from ten network realizations. Solid lines correspond to the MF+UC scaling ���h�2�k�k−��+1�.
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�36�. The work by López et al. �65� revealed that in SF
networks �14,16� anomalous transport properties can emerge,
displayed by the power-law tail of distribution of the net-
work conductance. Now, we consider weighted resistor net-
works subject to a fixed total cost �the cost of each link is
associated with its conductance�.

In a recent paper we have shown that observables in the
EW synchronization problem and in �ohmic� resistor net-
works are inherently related through the spectrum of the net-
work Laplacian �36�. Consider an arbitrary �connected� net-
work where Cij is the conductance of the link between node
i and j, with a current I entering �leaving� the network at
node s �t�. Introducing the voltages measured from the mean

at each node, V̂i=Vi− V̄, where V̄= �1/N��i=1
N Vi, one obtains

�36�

V̂i = I�Gis − Git� . �25�

Here, G is the same network propagator discussed in the
context of the EW process, i.e., the inverse �Eq. �4�� of the

network Laplacian �Eq. �2�� in the space orthogonal to the
zero mode. Applying Eq. �25� to nodes s and t, where the

voltage drop between these nodes is Vst= V̂s− V̂t, one imme-
diately obtains the effective two-point resistance of the net-
work between nodes s and t �36,87�,

Rst �
Vst

I
= Gss + Gtt − 2Gst = �

k=1

N−1
1

�k
��ks

2 + �kt
2 − 2�ks�kt� .

�26�

The spectral decomposition in Eq. �26� is, again, useful to
employ the results of exact numerical diagonalization. Com-
paring Eqs. �4� and �26�, one can see that the two-point re-
sistance of a network between node s and t is the same as the
steady-state height-difference correlation function of the EW
process on the network �36�,

��hs − ht�2� = ���hs − h̄� − �ht − h̄��2� = Gss + Gtt − 2Gst = Rst.

�27�

For example, using the above relationship and employing the
MF+UC approximation �88�, one can immediately obtain
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FIG. 2. �Color online� �a� Steady-state width of the EW syn-
chronization landscape as a function of the weighting parameter �

for the BA networks for N=1000 with various average degree k̄

�k�
2m. Solid curves are the approximate �MF+UC� results
�Eq. �24�� for the same degree. For comparison, numerical results
for SW networks with the same degree �with the respective open
symbols� are also shown. Also, see Table I for actual numerical
values for �=−1. �b� Scaled width as a function of the weighting
parameter �. The solid curve is the scaled approximate �MF+UC�
result �Eq. �24��. The horizontal dashed line indicates the �similarly
scaled� absolute lower bound, as achieved by the fully connected
network with the same cost N�k� /2.
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FIG. 3. �Color online� Steady-state width of the EW synchroni-
zation landscape as a function of 1/m for the BA networks for �
=0.00 �solid symbols� and �=−1.00 �respective open symbols�, for
three different system sizes. Straight lines �solid for �=0 and
dashed for �=−1� correspond to the MF+UC approximation Eq.
�24�.

TABLE I. Comparing numerical values of the steady-state width
�w2� of the EW process at �=−1 for BA and SW networks of the
same finite average degree �k� and cost N�k� /2 �for N=1000� with
results of the MF+UC approximation Eq. �24�. Note that the width
in the MF+UC approximation for �=−1 coincides with that of the
globally optimal FC network of the same cost �compare Eqs. �14�
and �24��, �w2�
1/ �k�. Error bars on the numerically obtained val-
ues for the BA and SW networks are less that the last digit shown in
the table.

�k� BA SW FC

6 0.304 0.228 0.1666

20 0.0571 0.0531 0.0500

200 0.0053 0.00501 0.0050
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the scaling of the typical value of the effective two-point
resistance in weighted resistance networks, between two
nodes with degrees ks and kt,

Rst 
 Gss + Gtt � �ks
−�1+�� + kt

−�1+��� =
ks

1+� + kt
1+�

�kskt�1+� . �28�

A global observable, measuring transport efficiency,
analogous to the width of the synchronization landscape, is
the average two-point resistance �36,65� �averaged over all
pairs of nodes, for a given network realization�. Using Eq.
�27� and exploiting the basic properties of the Green’s func-
tion, one finds

R̄ �
2

N�N − 1��s�t

Rst =
1

N�N − 1��s�t

Rst

=
N

N − 1
2�w2� 
 2�w2� , �29�

i.e., in the asymptotic large system-size limit the average
system resistance of a given network is twice the steady-state
width of the EW process on the same network. Note that the
above relationships, Eqs. �27� and �29�, are exact and valid
for any graph.

The corresponding optimization problem for resistor net-
works then reads as follows: For a fixed total cost, Ctot
=�i�jCij =N�k� /2, where the link conductances are weighted
according to Eq. �8�, what is the value of � which minimizes

the average system resistance R̄���? Based on the above re-
lationship between the average system resistance and the
steady-state width of the EW process on the same graph �Eq.
�29��, the answer is the same as was discussed in Sec. II �Eq.

�24��: �*=−1 and R̄min=2N / ��N−1��k��
2/ �k� in the mean-
field approximation on uncorrelated random SF networks.

Numerical results for R̄��� are also provided for “free” by
virtue of the connection Eq. �29�, once we have the results
for �w2����.

B. Connection with random walks on weighted networks
and congestion-aware local routing schemes

Consider the weights 	Cij
 employed in the previous sec-
tions and define a discrete-time random walk �RW� with the
transition probabilities �68�

Pij �
Cij

Ci
�30�

and recall that Ci=�lCil. Pij is the probability that the walker
currently at node i will hop to node j in the next step. Note
that because of the construction of the transition probabilities
�being a normalized ratio�, the issue of cost constraint disap-
pears from the problem. That is, any normalization prefactor
associated with the conserved cost �as in Eq. �8�� cancels out,
and the only relevant information is Cij 	Aij�kikj��, yielding

Pij =
Cij

Ci
=

Aij�kikj��

�l
Ail�kikl��

=
Aijkj

�

�l
Ailkl

�
. �31�

Conversely, the results are invariant for any normalization
�constraint�, so for convenience, one can use the normalized
form of the Cij coefficients as given in Eq. �8�.

Having a random walker starting at an arbitrary source
node s, tasked to arrive at an arbitrary target node t, the
above weighted RW model can be associated with a simple
local routing or search scheme �57� where packets are inde-
pendently forwarded to a nearest neighbor, chosen according
to the transition probabilities Eq. �31�, until the target is
reached. These probabilities contain only limited local infor-
mation, namely the degree of all neighboring nodes. By con-
struction, the associated local �stochastic� routing problem
�Sec. III B 3� does not concern link strength �bandwidth�
limitations but rather the processing or queuing capabilities
of the nodes, so the cost constraint, associated with the links,
disappears form the problem.

1. Node betweenness for weighted RWs

In network-based transport or flow problems, the appro-
priate betweenness measure is defined to capture the amount
of traffic or information passing through a node or a link, i.e.,
the load of a node or a link �17,44–46,75,85,89,90�. Here,
our observable of interest is the node betweenness Bi for a
given routing scheme �57� �here, purely local and character-
ized by a single parameter ��: The expected number of visits
to node i for a random walker originating at node s �the
source� before reaching node t �the target� Ei

s,t, summed over
all source-target pairs. For a general RW, as was shown by
Doyle and Snell �68�, Ei

s,t can be obtained using the frame-
work of the equivalent resistor-network problem �discussed
in Sec. III A�. More specifically,

Ei
s,t = Ci�Vi − Vt� , �32�

while a unit current is injected �removed� at the source �tar-
get� node. Utilizing again the network propagator and Eq.
�25�, one obtains

Ei
s,t = Ci�Vi − Vt� = Ci�V̂i − V̂t� = Ci�Gis − Git − Gts + Gtt� .

�33�

For the node betweenness, one then obtains

Bi = �
s�t

Ei
s,t =

1

2�
s�t

�Ei
s,t + Ei

t,s�

=
1

2�
s�t

Ci�Gss + Gtt − 2Gts� =
Ci

2 �
s�t

Rst

=
Ci

2
N�N − 1�R̄ . �34�

Note that the above expression is valid for any graph and for
an arbitrary weighted RW defined by the transition probabili-
ties Eq. �30�. As can be seen from Eq. �34�, the node be-
tweenness is proportional to the product of a local topologi-
cal measure, the weighted degree Ci, and a global flow
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measure, the average system resistance R̄. As a specific case,
for the unweighted RW ��=0� Ci=�lAil=ki; thus the node
betweenness is exactly proportional to the degree of the

node, Bi=kiN�N−1�R̄ /2.
Using our earlier approximations and results for uncorre-

lated SF graphs Eqs. �22� and �24�, and the relationship be-
tween the width and the average system resistance Eq. �29�,
for weighted RW, controlled by the exponent �, we find

Bi��� =
Ci

2
N�N − 1�R̄ = CiN

2�w2� � N2 � − 1

� + �

ki
1+�

m1+� .

�35�

First, we consider the average “load” of the network

B̄ =
1

N
�

i

Bi =
�i

Ci

2
�N − 1�R̄ . �36�

Similar to Eq. �34�, the above expression establishes an exact
relationship between the average node betweenness of an
arbitrary RW �given by Eq. �30�� and the observables of the
associated resistor network, the total edge cost and the aver-

age system resistance. For example, for the �=0 case, B̄

= k̄N�N−1�R̄ /2. As noted earlier, for calculation purposes
one is free to consider the set of Cij coefficients given by Eq.
�8�, which also leads us to the following statement:

For a RW defined by the transition probabilities Eq. �30�,
the average RW betweenness is minimal when the average
system resistance of the associated resistor network with
fixed total edge cost (and the width of the associated noisy
synchronization network) is minimal.

Utilizing again our earlier approximations and results for
uncorrelated SF graphs and the relationship between the
width and the average system resistance, we find

B̄��� =
�i

Ci

2
�N − 1�R̄

= ��
i

Ci�N�w2�

� N2 �� − 1�2

�� − 2 − ���� + ��
. �37�

The average node betweenness is minimal for �=�*=−1, for
all �.

2. Commute times and hitting times for weighted RWs

The hitting time �st is the expected number of steps for the
random walker originating at node s to reach node t for the
first time. The commute time is the expected number of steps
for a “round trip” between nodes s and t, �st+�ts. Relation-
ships between the commute time and the effective two-point
resistance have been explored and discussed in detail in sev-
eral works �69,91,92�. In its most general form, applicable to
weighted networks, it was shown by Chandra et al. �91� that

�st + �ts = ��
i

Ci�Rst. �38�

For the average hitting �or first passage� time, averaged over
all pairs of nodes, one then obtains

�̄ �
1

N�N − 1��s�t

�s,t =
1

2N�N − 1��s�t

��s,t + �t,s�

=
�i

Ci

2N�N − 1��s�t

Rst =
�i

Ci

2
R̄ . �39�

Comparing Eqs. �36� and �39�, the average hitting time �the
average travel time for packets to reach their destinations�
then can be written as �̄= B̄ / �N−1�. Note that this relation-
ship is just a specific realization of Little’s law �93,94�, in the
context of general communication networks, stating that the
average time needed for a packet to reach its destination is
proportional to the total load of the network. Thus, the aver-
age hitting time and the average node betweeness �only dif-
fering by a factor of N−1� are minimized simultaneously for
the same graph �as a function of �, in our specific problem�.

3. Network congestion due to queuing limitations

Consider the simplest local “routing” problem �57,62� in
which packets are generated at identical rate � at each node.
Targets for each newly generated packet are chosen uni-
formly at random from the remaining N−1 nodes. Packets
perform independent, weighted RWs, using the transition
probabilities Eq. �30�, until they reach their targets. Further,
the queuing or processing capabilities of the nodes are lim-
ited and are identical, e.g. �without loss of generality� each
node can send out one packet per unit time. From the above
it follows that the network is congestion-free as long as

�
Bi

N − 1
� 1, �40�

for every node i �56,57,60,61,63�. As the packet creation rate
� �network throughput per node� is increased, congestion
emerges at a critical value �c when the inequality in Eq. �40�
is first violated. Up to that point, the simple model of inde-
pendent random walkers �discussed in the previous subsec-
tions�, can self-consistently describe the average load land-
scape in the network. Clearly, network throughput is limited
by the most congested node �the one with the maximum
betweenness�, thus

�c =
N − 1

Bmax
, �41�

a standard measure to characterize the efficiency of commu-
nication networks �56,57,60,61,63�.

To enhance or optimize network throughput �limited by
the onset of congestion at the nodes�, one may scale up the
processing capabilities of the nodes �60�, optimize the under-
lying network topology �57�, or optimize routing by finding
pathways which minimize congestion �61–63�. The above
RW routing, controlled by the weighting parameter �, is an
example for the latter, where the task is to maximize global
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network throughput by locally directing traffic. In general,
congestion can also be strongly influenced by “bandwidth”
limitations �or collisions of packets�, which are related to the
edge betweenness, and not considered here.

For ��−1, within our approximations, nodes with high
betweenness coincide with nodes with high degree. Further,
for nodes with high degree, the mean-field approach on un-
correlated SF graphs is expected to work reasonably well. In
this region, the scaling behavior Bmax is related to that of the
highest degree kmax in the graph of finite size N. The scaling
of the maximum degree with the system size, however, even
for idealized SF network models, is very sensitive to the
details of the network construction. For example, in the re-
gion of our interest, 2��
3, for the standard configuration
model �CM� �95�, the largest degree is governed by the natu-
ral cutoff, kmax
mN1/��−1� �17,96�, but this network has cor-
relations, especially between nodes with larger degrees
�76,96�. So one may use the MF+UC approximation, but
should expect stronger corrections. On the other hand, in a
recent construction for SF networks, the uncorrelated con-
figurational model �UCM� �76�, the resulting network is
genuinely uncorrelated, and the largest degree is governed by
the structural cutoff, kmax
��k�N�1/2 �76,96–98�. Combining
these cutoff behaviors with Eq. �35�, for the CM scale-free
network model with the natural cutoff one has

Bmax
CM ��� � N2 � − 1

� + �

kmax
1+�

m1+� 

� − 1

� + �
N�2�+�−1�/��−1� �42�

and

�c
CM��� =

N − 1

Bmax
�

� + �

� − 1
N−��+��/��−1� � O�N−��+��/��−1�� .

�43�

Similarly, for the UCM scale-free network model one finds

Bmax
UCM��� 


� − 1

� + �
N2�� − 1

� − 2

N

m
��1+��/2

�44�

and

�c
UCM��� 


� + �

� − 1

1

N
�� − 1

� − 2

N

m
�−�1+��/2

� O�N−�3+��/2� .

�45�

From the above expression one can see that in the ��−1
region, for large N, the exponential decay in � dominates for
both the CM �Eq. �43�� and UCM �Eq. �45�� scale-free net-
works. Consequently, in the semi-infinite region ��−1,
�c��� is a monotonically decreasing function of �.

For ��−1, nodes with high betweenness are the nodes
with a low degree, but for these nodes the above approxima-
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FIG. 4. �Color online� Normalized RW node betweenness on BA networks with m=3 as a function of the degree of the nodes for four
system sizes �N= 200 �dotted�, 400 �dashed�, 1000 �long-dashed�, 2000 �solid�� for �a� �=−2.00, �b� �=−1.00, �c� �=0.00, and �d� �
=1.00. Data point represented by lines are averaged over all nodes with degree k. Data for different system sizes are essentially indistin-
guishable. Scatter plot �dots� for the individual nodes is also shown from ten network realizations for N=1000. Solid curves, corresponding
to the MF+UC scaling B�k��k�+1 �Eq. �35��, are also shown.
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tions are expected to work poorly. Further, there are many
nodes with a degree of order m, and the actual distribution of
the betweenness �through the weighted degrees Ci, Eq. �34��
for nodes with ki�m, depends strongly on the “local” fluc-
tuations of the network disorder �randomness of the network
structure�. Ignoring all of the above, and blindly using Eq.
�35� with kmin=m, one finds �c�������+�� / ��−1��N−1,
which is a monotonically increasing function of � in the
semi-infinite region ��−1. Thus, within our crude approxi-
mate scheme, the throughput is maximum at �*=−1.

Numerical work, performed on the BA network ��=3�,
supports the above simple analysis. The BA network is
somewhat special, in that correlations are anomalously weak
�or marginal�, and the structural and natural cutoffs exhibit
the same O�N1/2� scaling with the system size. Testing our
MF+UC predictions, we find that the betweenness is, in-
deed, strongly correlated with the degree, in line with Eq.
�35� �Fig. 4�. Further, for ���*�−1, the tail of the degree
distribution governs the tail of the distribution of the be-
tweenness. Specifically, the cumulative degree distribution,
P��k��k1−� translates to the cumulative betweenness distri-
bution P��B��B�1−��/�1+�� �Fig. 5�. For ���*�−1, as
noted above, the large-B tail of the betweenness distribution
is coming from the small-k behavior of the degree distribu-
tion. While there is a strict lower cutoff in the degrees m,
there are many nodes with degree m. It is then the quenched
randomness in the particular network realization which ulti-
mately governs the upper cutoff of the betweenness �through
the weighted degrees Ci�. The tail of the betweenness distri-
bution is essentially independent of N and numerically found
to scale in an exponential-like fashion �Fig. 5�.

As qualitatively predicted by the MF+UC approximation,
the critical network throughput �c��� exhibits a maximum at
around �*�−1, corresponding to the optimal weighting
scheme, as shown in Figs. 6. Further, in the ��−1 region,

where the long tail of the degree distribution dominates the
network behavior, the network throughput scales with the
number of nodes as �N−��+��/��−1�. �Note that for the BA
network ��=3�, the scaling with N by Eqs. �43� and �45�
coincide.� The results for the scaled throughput are shown in
Figs. 7.

In a recent, more realistic network traffic simulation study
of a congestion-aware routing scheme, Danila et al. �62�
found qualitatively very similar behavior to what we have
observed here. In their network traffic simulation model,
packets are forwarded to a neighbor with a probability pro-
portional to a power � of the instantaneous queue length of
the neighbor. They found that there is an optimal value of the
exponent �, close to −1.

We also show numerical results for the network through-
put for SW networks with the same degree �Fig. 6�a��. In
particular, an optimally weighted SW network always out-
performs its BA scale-free counterpart with the same degree.
Qualitatively similar results have been obtained in actual
traffic simulation for networks with exponential degree dis-
tribution �62�.

To summarize, the above simple weighted RW model for
local routing on SF networks indicates that the routing
scheme is optimal around the value �*�−1. At this point,
the load is balanced �Eq. �35� and Fig. 4�b��, both the aver-
age load and the average packet delivery time are minimum,
and the network throughput is maximum �Fig. 6�.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

B/[N(N−1)]

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
>
(B

)

β=1.00
β=0.00
β=−1.00
β=−2.00

FIG. 5. �Color online� Cumulative distributions of the normal-
ized RW node betweenness for BA networks with m=3, for four
values of �, each with four system sizes. The four families of cu-
mulative distributions correspond to the four different values of �,
from left to right in the figure, �=−1.00, −2.00, 0.00, and 1.00.
Each family has four system sizes: N=200 �dotted�, 400 �dashed�,
1000 �long-dashed�, and 2000 �solid curves�. Finite-size effects are
only significant for �=0.00 and �=1.00. Straight dashed lines cor-
respond to the predicted power-law tail of the cumulative distribu-
tion for ��−1, P��B��B�1−��/�1+��.
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FIG. 6. �Color online� Critical network throughput per node as a
function of the weighting parameter � for BA networks �solid sym-
bols� for various system size for �a� m=3 and for �b� m=10. Figure
�a� also shows the same observable for SW networks �the same
respective open symbols� for the same system sizes.
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From a viewpoint of network vulnerability �99–103�, the
above results for the weighted RW routing scheme also im-
ply the following. Network failures are often triggered by
large load fluctuations at a specific node, then subsequently
cascading through the system �102�. Consider a “normal”
operating scenario �i.e., failure is not due to intentional or
targeted attacks�, where one gradually increases the packet
creation rate � and the overloaded nodes �ones with the
highest betweenness� gradually removed from the network
�103�. For ���*�−1 �including the unweighted RW with
�=0�, these nodes are the ones with the highest degrees, but
uncorrelated SF networks are structurally vulnerable to re-
moving the hubs. At the optimal value of �, not only the
network throughput is maximal, and the average packet de-
livery time is minimal, but the load is balanced: overloads
are essentially equally likely to occur at any node and the
underlying SF structure is rather resilient to random node
removal �99,100�. Thus, at the optimal value of �, the local
weighted RW routing simultaneously optimizes network per-
formance and makes the network less vulnerable against in-
herent system failures due to congestions at the processing
nodes.

IV. SUMMARY

We studied the EW process, a prototypical synchroniza-
tion problem in noisy environments, on weighted uncorre-

lated scale-free networks. We considered a specific form of
the weights, where the strength �and the associated cost� of a
link is proportional to �kikj�� with ki and kj being the degrees
of the nodes connected by the link. Subject to the constraint
that the total network cost is fixed, we found that in the
mean-field approximation on uncorrelated scale-free graphs,
synchronization is optimal at �*=−1. Numerical results,
based on exact numerical diagonalization of the correspond-
ing network Laplacian on BA SF networks, confirmed the
mean-field results, with small corrections to the optimal
value of �*. Although here, because of the presence of noise
and the cost constraint, the setup of the problem is quite
different, our results are very similar to that of the synchro-
nization of coupled nonlinear oscillators by Zhou et al. �28�.

Employing our recent connections �36� between the EW
process and resistor networks, and some well-known connec-
tions between random walks and resistor networks
�68–70,91,92�, we also explored a naturally related problem
of weighted random walks. For the simple toy problem, we
found that using the associated RW transition probabilities
proportional to a power � of the degree of the neighbors,
Pij 	Aijkj

� �Eq. �31��, the local “routing” is optimal when the

�*=−1 �in the mean-field approximation�. At this optimal
network operation point, the load is balanced, both the aver-
age load and the average packet delivery time are minimum,
and the network throughput is maximum. Since the load is
balanced, and thus can lead to local overloads and subse-
quent failures at any nodes with roughly equal probabilities,
the above optimal operating point is also the most resilient
one for the underlying scale-free communication network.

Also, while the above local weighted “routing” is overly
simplified, some aspects of it can be possibly combined with
existing realistic protocols to optimize performance in
queue-limited communication networks. For example, exist-
ing protocols often utilize an appropriately defined metric for
each node, capturing their “distance” �the number of hops� to
the current target �104,105�. A node then forwards the packet
to a neighbor, which is closer to the target than itself. There
may be many nodes satisfying this criterion, so the forward-
ing node could employ the weighting RW scheme �Eq. �31��,
applied to this subset, to select the next node. This may result
in improved delivery times and in the delaying of the onset
of congestion.

Another major ingredient �and simplification� of the pro-
totypical transport problems considered in this work was that
the source and target role of the nodes �e.g., packet creation
and annihilation rates� were homogeneous. That is, despite
the degree distribution being heterogeneous, the probability
for a node to serve as a source or target in the resistor net-
work �Sec. III A� or, analogously, the packet creation rate
and the probability of a node to be a target were identical for
all nodes �Sec. III B 3�. This was a key technical reason why
the actual value of the optimal weight exponent turned out to
be around �*�−1. But in more realistic network-transport
scenarios, hubs not only have significantly higher degree, but
also have a significantly higher rate of “units” �e.g., passen-
gers or packets� entering or leaving the network �43,55�.
Even within our simple models �resistor networks or RW
routing�, preliminary results �106� show that the appropri-
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FIG. 7. �Color online� Scaled critical network throughput per
node for different system sizes �as suggested by Eq. �43�� for BA
networks ��=3� as a function of the weighting parameter � in the
��−1 region for �a� m=3 and �b� m=10.
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ately “reweighted” average flow �based on the nodes’ indi-
vidual source and target frequency�, again, can be maxi-
mized. Further, for sufficiently strong heterogeneity in the
nodes’ individual source and target importance �correlated
with the degree�, the value of the optimal weight exponent
�* is positive �to optimally support a higher net in and out
flux at those nodes�, matching the sign of that of empirically
observed networks �43,42,55�. Further research is in progress
along this direction �106�.
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